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ABSTRACT

The synoptic imaging survey proposed for the Large Synoptic Survey Telescope
(LSST) will generate large numbers of short exposure ('15 seconds) images. A pri-
mary science driver for this project is to measure the cosmic shear signal from weak
lensing to extreme accuracy. One difficulty, however, is that in these short exposure
images, the spatial variation of the Point Spread Function (PSF) shapes may be dom-
inated by the atmosphere, in addition to optics errors. While optics errors mainly
cause the PSF to vary on angular scales similar or larger than a single CCD sensor,
the atmosphere generates stochastic structures on a wide range of angular scales. Since
the PSF patterns in these images can only be inferred by interpolating the sparsely
sampled stars in the field, these multi-scale, complex patterns from the atmosphere
complicates the PSF interpolation problem. In this paper we present a new method,
psfent, for interpolating atmospheric PSF shape parameters, based on reconstructing
underlying shape parameter maps with a multi-scale maximum entropy algorithm. We
demonstrate, using images from the LSST Photon Simulator (PhoSim), the perfor-
mance of our approach relative to a 5th-order polynomial fit (representing the current
standard) and a simple boxcar filtering technique. Quantitatively, psfent predicts
more accurate PSF models in all scenarios and the residual PSF errors are less corre-
lated spatially. This improvement in PSF interpolation leads to a factor of 3.5 lower
systematic errors in the shear power spectrum on scales smaller than ∼ 13′, compared
to standard polynomial fitting. We estimate that with psfent and for stellar densities
greater than '1/arcmin2, the spurious shear correlation from PSF interpolation, after
combining a complete 10-year, dataset from LSST is lower than the corresponding
statistical uncertainties on the cosmic shear power spectrum, even in a conservative
scenario.
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1 INTRODUCTION

Gravitational lensing is the physical phenomenon where
gravitational fields perturb the trajectory of light rays and
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therefore distort observed images. In particular, the study of
weak gravitational lensing involves measuring the statistical
properties of an ensemble of distorted galaxy images. Weak
gravitational lensing is, in principle, one of the most power-
ful probes of dark matter and dark energy. By measuring,
at different redshifts, the statistical distortion of background
galaxies due to large scale cosmic structures – the “cosmic
shear” – it is possible to place extremely tight constraints on
the nature of dark energy (see e.g. Bartelmann & Schneider
2001; Hu & Tegmark 1999; Jain & Seljak 1997).

For observations to date, the accuracy of cosmic shear
measurements has been mostly limited by the statistical
variation of random galaxy shapes in the relatively small
sky areas studied (Hetterscheidt et al. 2007; Benjamin et al.
2007; Schrabback et al. 2010). However, in future wide-field
weak lensing surveys such as those planned with the Dark
Energy Survey,1 LSST,2 (Ivezic et al. 2008) and Euclid,3

extremely large datasets will greatly reduce the statistical
errors, making these experiments systematics-limited.

A major source of systematic error in weak lensing
comes from our incomplete knowledge of the PSF. To ac-
count for the effect of the PSF on observed galaxy images,
we need a model for it at every galaxy position; these mod-
els can be constrained by images of stars, which provide
noisy estimates of the PSF shape that are more sparsely
distributed than the galaxies. This is the “PSF interpola-
tion problem”. In an earlier paper (Chang et al. 2012, here-
after C12), we quantified the spatial variation in the PSF
shapes for a typical LSST 15-second exposure due to var-
ious physical effects, such as optics misalignments and at-
mospheric turbulence. We found that, although most of the
PSF anisotropy due to instrumental effects varies smoothly
over the field of view, the atmospheric turbulence can gener-
ate PSF spatial variation on a wide range of scales in these
short exposures, with patterns that do not repeat over time.
This poses a new PSF interpolation challenge quite different
from that faced by previous studies, which relied on images
with longer exposure times and/or contained large instru-
mental effects that dominate the errors.

These atmospheric features have been observed in short
exposure (∼ 10 seconds) images by, for example, Wittman
(2005) and Heymans et al. (2011, hereafter H11); in partic-
ular, H11 pointed out that such high frequency, turbulence-
induced spatial PSF variations in single short exposures may
lead to systematic errors in shear measurements at levels one
order of magnitude higher than the limit required for future
weak lensing surveys, were existing PSF interpolation tech-
niques to be used.

In weak lensing analyses to date, the scheme used most
often to interpolate the PSF between sparsely sampled stars
has been to fit a low order two-dimensional spatial polyno-
mial function to the stars’ shape parameters. Van Waerbeke
et al. (2002) claimed that 2nd-order polynomials are suffi-
cient to model the PSF anisotropy variation across a typical
CCD sensor of size ∼ 10′, while other studies identified pos-
sible drawbacks of simple polynomial fitting (Massey et al.
2002) and more sophisticated models have been suggested

1 http://www.darkenergysurvey.org/
2 http://www.lsst.org/
3 http://sci.esa.int/euclid

(e.g. Hoekstra 2004; Bergé et al. 2012). In general, being
dominated by instrumental effects, which primarily generate
large-scale, smooth features, the PSF anisotropy in long ex-
posure data can be modelled reasonably well using low order
interpolation methods, even though these patterns are only
sparsely sampled by the relatively low density of stars in the
field. However, for future synoptic wide-field surveys, such as
LSST, where high cadence imaging is required, short expo-
sures are inevitable. It is therefore important to re-examine
the traditional PSF interpolation techniques, and develop
new interpolation algorithms that are better suited for these
data.

A deliberate effort is being made to study in detail
the PSF patterns for LSST by carrying out end-to-end,
photon-by-photon image simulations using the LSST Pho-
ton Simulator (PhoSim; Peterson et al. 2012, 2009; Connolly
et al. 2010). 4 The ray-tracing procedure includes models for
the instrument response, telescope optics, and, most impor-
tantly for our purposes, the atmosphere.

For a full description of the atmospheric model and
quantitative comparison of the model against real data, we
refer the reader to Jernigan et al. (2012, hereafter J12). In
this work, our focus is on studying the PSF interpolation
problem, for which we require simulated data containing re-
alistic atmospheric PSFs, with a range of strengths and spa-
tial scales. The PhoSim images meet these criteria, as we
demonstrated in J12 by comparing the relevant PSF char-
acteristics in our simulated images with those seen by H11
in short exposure images taken by the MegaCam wide-field
camera (1 degree2) on the Canada-France-Hawaii Telescope
(CFHT). In this work we therefore test our new algorithm
on PhoSim simulated images, for which we know the under-
lying PSF spatial variation.

Working with simulated images is vital for this par-
ticular task, since existing data that are suitable for our
tests are very limited – our tests require wide-field, short-
exposure images with high stellar densities, and taken under
a wide range of atmospheric conditions. Simulations, with
sufficiently high fidelity, allow us to test the absolute, as
well as relative, accuracy of our algorithm in a more con-
trolled fashion and with higher statistics. Our PhoSim ap-
proach can be seen as the next step beyond that taken by
Bergé et al. (2012), who re-sampled PSF patterns observed
in Subaru images. Here, we use PhoSim to generate large
numbers of predicted LSST images with the relevant expo-
sure time, 15 seconds – effectively amplifying the data taken
with CFHT for a more rigorous testing.

The primary aim of this paper is to introduce a new
PSF interpolation technique, and test it under controlled
conditions. In both real and simulated PSF patterns we ob-
serve structure due to the atmosphere on many different
angular scales: this motivates us to model the underlying
anisotropy maps using a range of different-sized smoothing
kernels. We infer the pixel values of these underlying maps
from the noisy, sparsely sampled stellar shape data given
a non-committal entropic prior. We quantitatively compare
this new maximum entropy method with two other meth-
ods that represent the current standards, and investigate the

4 http://lsst.astro.washington.edu/
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performance of all three using high-fidelity simulations over
a range of observing conditions.

The structure of this paper is as follows. In Section 2,
we review briefly the relevant weak lensing theory and the
PSF interpolation problem for weak lensing. We then de-
scribe, in Section 3, our new PSF interpolation method and
give arguments for why it is well-suited for the particular
problem at hand. In Section 4 we use simulated images to
quantify the performance of our new method against two
strawman PSF interpolation techniques. We also define the
metrics that we use to quantify the performance of a given
interpolation method. The results of this programme are
presented in Section 5. We then discuss their implications in
terms of the systematic errors in cosmic shear measurement
for future weak lensing surveys and make suggestions for
further improvements on psfent in Section 6. We conclude
in Section 7.

2 WEAK LENSING AND PSF
INTERPOLATION

In the weak lensing regime, the effect of gravitational lens-
ing is to add a small offset to the intrinsic ellipticity of
each galaxy, where ellipticity is typically defined as a two-
component complex “spinor”, ε = ε1 + iε2 (e.g. Schneider
et al. 2002). The resulting observed ellipticity is a noisy but
unbiased estimator of the applied shear. We then constructs
certain statistics from these shear estimators to infer cosmol-
ogy. One of the most popular statistics is the two-point ellip-
ticity correlation function ξ±(θ) for the ensemble of galaxies:

ξ±(θ) = 〈εt(θ0)εt(θ0 + θ)〉 ± 〈ε×(θ0)ε×(θ0 + θ)〉 , (1)

where the angle brackets indicate an average over galaxy
pairs separated by θ (with one galaxy located at θ0) and the
subscripts t and× indicate an isotropized decomposition of ε
along the line connecting a certain pair of galaxies. The shear
correlation functions predicted from cosmology, compared
with these observed galaxy ellipticity correlation functions,
provide a route by which the cosmological parameters can
be inferred (Schneider et al. 2002).

The major challenge in a ground-based weak lensing
analysis is to account for the instrumental and atmospheric
PSF contribution to the observed galaxy shapes, such that
these effects do not systematically contaminate the shear
signal one wishes to measure. This involves “deconvolving”
(approximately) the PSF from the galaxy images, where
the PSF at each galaxy’s location is “interpolated” from the
shapes of nearby stars.

A wide range of algorithms have been developed to
model the shapes of the galaxies and stars, and to perform
PSF deconvolution in the noisy data (see e.g. Heymans et al.
2006; Massey et al. 2007; Kitching et al. 2012, for a summary
of the various methods). However, to date, the PSF inter-
polation problem has been taken to be of secondary impor-
tance, since the PSF ellipticity patterns in existing images
appear to be largely instrumental in origin, somewhat re-
peatable, and well-modelled by smoothly-varying functions
such as low-order polynomials. However, as we showed in
J12 and C12, this may not be the case for future instru-
ments such as LSST, which are specifically designed for
weak lensing and have extremely tight requirements on the

instrument-induced PSF anisotropy. In these circumstances,
the atmospheric effects, which used to be subdominant to in-
strumental effects, now become one of the key components
in determining the PSF shape and the PSF spatial varia-
tion. This implies that the PSF shapes may no longer be
smoothly varying across the field and modelling the PSF
variation with low-order polynomials may be problematic. In
addition, since the atmospheric effects are more pronounced
in short exposures, datasets such as LSST, which are com-
posed of sets of multi-epoch short exposure images instead
of one long exposure, may suffer more from the atmospheric
effects in single exposures when constructing the PSF model
from interpolation.

To illustrate this PSF interpolation challenge, we show
in Figure 1 two single-component (ε1), model-subtracted
stellar ellipticity maps from 74-second exposure images
taken with the CFHT MegaCam5 on a dense stellar field
(∼ 7 stars per arcmin2). The two images used to construct
Figure 1 were taken on the same patch of sky but in two
different nights, which appear to have very different atmo-
spheric conditions. These data are the same as those used
in H11, so we refer to their paper for further details of the
dataset. A 2nd-order polynomial was subtracted from the
raw ellipticity measurements (as explained in H11) – this ac-
counts for most of the instrumental PSF contribution, but
may also have removed some large scale atmospheric fea-
tures. These images demonstrate that PSF spatial patters
contain the characteristic high frequency structures from the
atmosphere, which is the main motivation for our new PSF
interpolation method.

3 PSFENT: A MULTI-SCALE INFERENTIAL
INTERPOLATION METHOD

As seen in Figure 1, the atmospheric PSF anisotropy pat-
terns can contain structure on a range of angular scales, with
both patchy and striped features. This motivates us to look
for flexible functions with which to model this spatial vari-
ability, which we can then fit to the sparsely sampled stellar
PSF shape data in any given situation.

3.1 Interpolant model, and the likelihood function

We treat the two components of complex PSF ellipticity as
independent fields, ε1(x, y) and ε2(x, y), to be reconstructed
from sparse, noisy, stellar shape data εobs1,k and εobs2,k . (Here, k
runs from 1 to the number of stars observed, Nstar.) Casting
the PSF interpolation problem as an image restoration prob-
lem in this way allows us to properly take into account the
observational errors on the measured star shapes, and prop-
agate those errors into uncertainties on the interpolant. An
iterative likelihood fit is performed: at each step, the two el-
lipticity components of each stellar image are predicted from
the model underlying ellipticity fields and compared to the
measured stellar ellipticities.

Both the predicted and observed data are inputs to the
likelihood function. Under the assumption of uncorrelated

5 http://www.cfht.hawaii.edu/Instruments/Imaging/Megacam/
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Figure 1. Examples of the residual PSF ellipticity (ε1) patterns in ∼1 degree2 sky regions, as observed in a dense stellar field with the
CFHT MegaCam. The exposure time for these images is 74 seconds. As described in H11, a 2nd-order polynomial model has been fitted
and subtracted from the raw stellar ellipticities to remove the optics contribution.

Gaussian stellar shape uncertainties σk, this can be writ-
ten for e.g. the first ellipticity component as the following
probability distribution (PDF) for the data:

Pr(εobs
1 |h1) =

1

(2π)Nstar/2
∏
k σ1,k

× exp

(
−1

2

∑
k

[
εobs1,k − ε1(xk, yk;h1)

σ1,k

]2)
, (2)

and likewise for ε2.
In Equation 2, h1 is a parameter vector that represents

the model. It is the components of this parameter vector
(and its companion h2 for ε2) that we vary to fit the stellar
shape data. We choose to parameterise the flexible interpo-
lation functions ε1(x, y) and ε2(x, y) with pixelated grids on
the sky. We compute the predicted ellipticity at the kth star
position, ε1(xk, yk;h1), by linear interpolation between the
neighbouring pixels: we choose the pixel scale of each grid
on our maps such that each pixel contains approximately
1 target point, on average, such that the linear interpola-
tion choice does not affect the final prediction. For our test
data, we fix the model map sizes at 80 × 80 pixels for each
ellipticity component.

Such free-form discretized functions like h1 and h2 have
as many parameters to be inferred as there are pixels in the
grids. However, we would like to impose some smoothness
on these maps, such that structure on a range of angular
scales can be predicted. We do this by constructing each map
from a weighted sum of seven “hidden” maps, each convolved
with a Gaussian “Intrinsic Correlation Function” (ICF) of a
different angular scale: the result is known as the “visible”
map. This procedure provides an efficient way of introducing
smooth, correlated structure on a variety of angular scales.
In our notation, h stands for “hidden.” We therefore have
7× 80× 80 = 44, 800 hidden pixel values to vary during the
fit, for each ellipticity component. The convolutions with the
ICF kernels reduce the effective number of free parameters,
but even so many of these will still turn out not to be con-
strained by the few hundred data points in the field. The

choice of prior PDF for the parameters in the h is therefore
important.

3.2 The entropic prior PDF

We take the pixel values of the hidden images to be uncorre-
lated by construction, and assign a positive-negative entropic
prior for them (Maisinger et al. 2004, hereafter MHL04).
This has the effect of suppressing structure in the maps
unless it is required by the data. In this way we give the
method plenty of flexibility to fit the data well, but reg-
ularise to avoid over-fitting. Such a multi-scale maximum
entropy method was first used by Weir (1992), and is im-
plemented in the publicaly available MemSys4 code (Gull
& Skilling 1999). We illustrate the construction of a multi-
scale ellipticity component map in Figure 2, showing how a
range of different features on different angular scales can be
modelled.

This model is similar in both essence and outcomes to
one comprising a pixelated map and its “à trous” wavelet
transform, as shown in some detail by MHL04. This wavelet
transform can also be written as a set of convolutions; the
implementation of MHL04 works well when making maps
of the CMB temperature anisotropies, which also exhibit
patchy features on a range of angular scales. Just like wavelet
basis functions, the Gaussian ICFs we use have characteristic
angular scales wi that increase approximately exponentially:
the smallest is a single map pixel (w0 = 1), while the largest
is approximately w6 = 26 = 64 pixels in size. The ICFs are
normalised to unit volume.

The entropic prior PDF for a single hidden pixel value
hi takes the following form

Pr(hi|mi) = exp[αS(hi)] , (3)

S(hi) = ψi − 2mi − hi log
(
ψi − hi
2mi

)
, (4)

where ψi = (h2
i + 4m2

i )
1/2. This distribution peaks at zero

and is symmetric. The “regularisation constant” α is a (nui-
sance) hyperparameter that parametrises the prior distribu-

c© 2011 RAS, MNRAS 000, 1–14
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Figure 2. Illustrating the psfent multi-scale ellipticity map
model. “Hidden” maps (left column, greyscale) are convolved with
Gaussian kernels (ICFs) of exponentially-decreasing size (middle
column) to make seven component “visible” maps (right, orange).
These component maps are then weighted and summed to make
the final model ellipticity map, which can be interpolated linearly
onto any target position to predict the PSF shape there.

tion. α is inferred from the data via the Bayesian evidence
internally by MemSys4, and controls the final importance
of the prior relative to the data. The “model” values mi

(which we take to be constant over each hidden image) are
also hyper-parameters, that determine the ease with which
structure develops at each resolution scale: the smaller the
value of mi, the stronger the suppression of features at that
scale.

3.3 Informing the prior

At this point we might ask whether we can inject any in-
formation into the problem by choosing values of the mi to
reflect the statistical properties of the simulated atmospheric
PSF patterns. For a given pixel value, the entropic prior has
approximate width m ≈ σ2

h/2, where σh is the rms width
of an approximating Gaussian (MHL04). This suggests that
a possible algorithm for assigning the prior width at a par-
ticular resolution scale is to consider the variance of pixel
histograms of low noise “true” multi-scale ICF hidden ellip-
ticity maps at that scale. To do this, we generate a special
set of 100 simulated images with an ultra-high density of
stars and low noise. These unphysically dense star fields al-
low us to access the true PSF pattern expected in the short
exposures. The simulations are then run through psfent to
be effectively “decomposed” into the 7 different scales, cor-
responding to the 7 ICFs. We generated one histogram for
each of the 7 resolution scales that contain the pixel values
in the hidden images for all 100 atmospheric PSF patterns
on those scales. These histograms, as shown in Figure 3, are
more peaked, and have broader wings, than a Gaussian dis-
tribution. The entropic prior PDF (shown in blue), while
still imperfect, is a slightly better approximation to these
distributions. We found the rms widths of the histograms at
the different scales increase from the smallest scale to the
largest scale as: mi =[0.0003, 0.0002, 0.0027, 0.0050, 0.0064,
0.0089, 0.0188]. There is very little power on the smallest
two scales and nonlinear increase from the remaining mid-
dle to large scales. We adopt these numbers as the width for
the entropic priors throughout the rest of the paper.

We find that informing the priors in this way largely
improves the accuracy of the PSF model constructed by ps-
fent, compared to using flat, non-informative priors or the
default prior set in MemSys4, where the latter is optimized
for CMB temperature map reconstruction.

As an aside, we note that the process of assigning prior
widths for the different angular scales plays a very similar
role to the assignment of the range parameter in the co-
variance function of the Gaussian process at the heart of a
Kriging interpolation (Bergé et al. 2012). The Kriging range
parameter could also be derived by inspecting large numbers
of high density simulated starfields, to capture the informa-
tion present in the data-constrained atmospheric turbulence
model in its most useful form.

3.4 Estimating the posterior PDF

The posterior PDF, e.g. Pr(hj |{εobsj }), for the hidden pixel
values given the data can be approximated by a multivari-
ate Gaussian, centred at the maximum posterior point. The
maximum posterior maps provide our best estimates for the

c© 2011 RAS, MNRAS 000, 1–14
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Figure 3. Setting the entropic prior PDF on the map pixels. We show here in blue the entropic prior PDF (Equation 4) for a single
pixel value h for two angular scales, 16 pixels (left) and 4 pixels (right). The grey curves are the pixel histograms of simulated ellipticity
component maps at that scale, and the black curve is the average of those histograms. The entropic prior peaks at zero as required,
and has slightly longer tails than a Gaussian. While the atmospheric PSF ellipticity map histograms have even longer tails and sharper
peaks, especially on the smaller scales, by choosing the prior hyperparameter m judiciously, the width of the histogram can be matched
reasonably well. Note that the two plots have different scales on the x-axis – the histogram is much tighter for the smaller scales.

PSF shape parameters at any target point in the field. Sam-
ple maps can be drawn from the posterior PDF in order to
provide approximate uncertainties on these estimated PSF
parameters. We find that 100 sample maps provide a suf-
ficiently accurate standard deviation map, which we use
for the uncertainties on the predicted PSF ellipticity esti-
mates. This Gaussian approximation (including the maxi-
mum of the posterior, the covariance matrix of the param-
eters, and the associated evidence) is computed using the
MemSys4 code, available on request from MaxEnt Data
Consultants.6 Details of the implementation can be found
in Gull & Skilling (1999).

4 SIMULATION AND ANALYSIS

4.1 Simulations

As discussed in Section 1, since the existing datasets are in-
sufficient for us to perform a systematic test with psfent, we
depend on PhoSim to generate large number of simulated
images. We refer to Peterson et al. (2012),Peterson et al.
(2009) and Connolly et al. (2010) for a complete descrip-
tion of PhoSim and J12 for the theoretical background and
numerical validation of the atmospheric model in PhoSim,
which is an important element for this study. We concluded
in J12 that the simulations from PhoSim show sufficiently
realistic atmosphere-induced PSF anisotropy for the purpose
of weak lensing studies. Here, to facilitate comparison with
parallel PSF interpolation studies, we provide a very brief
overview of the PhoSim atmospheric model.

At the heart of the PhoSim atmospheric model is a sys-
tem of seven-layer frozen Kolmogorov screens (Kolmogorov
1992; Lane, R. G. 1992). These screens are constructed with
density fluctuations obeying a full three-dimensional Kol-
mogorov energy spectrum of E(k) ∝ k−5/3, with values

6 http://www.maxent.co.uk

for the mean seeing, inner and outer turbulence scale as-
signed to each individual screen. All screens contain a wide
range of turbulent structures, and these screens are carried
by wind in different directions over the course of the expo-
sure time. The distributions of wind speeds and atmosphere
structure function parameters that PhoSim uses are based
on observed data taken near the LSST site at Cerro Pachon,
Chile.

Although PhoSim was designed to simulate images
from LSST in particular, the atmospheric model in PhoSim
generates PSF patterns qualitatively generic to most large
aperture telescopes. The result of this study can thus be
easily extended to estimate the performance of our PSF in-
terpolation method on other instruments.

4.2 Testing programme

We use a mock stellar catalogue to generate realistic images
of star fields. The catalogue is based on the model of Jurić
et al. (2008), and contains a realistic population of stars in
a typical LSST field with corresponding characteristics for
each star. The average observed density of the population
is ' 1/arcmin2, which corresponds to that expected at a
galactic latitude of |b| ∼ 60; the equatorial coordinates of the
portion of the star catalogue used for this baseline simulated
field was (1.5,+0.2) degrees.

Two competing factors come into play in the PSF inter-
polation problem: (1) the complexity of the PSF patterns,
and (2) the number of stars available for constructing a PSF
model (or effectively, the galactic latitude). The more com-
plex the PSF pattern, or the fewer stars available to inter-
polate, the more challenging it is to infer the PSF model
from stars. The two effects are tested separately with the
simulation and analysis pipeline described below.

We address (1) by generating 100 realisations of the
atmospheric PSF patterns, and “observing” the mock star
fields at these 100 different “epochs.” We generate these
PSF realisations using the realistic distribution of atmo-
spheric parameters described in J12. The median PSF size

c© 2011 RAS, MNRAS 000, 1–14
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in our simulations is ∼ 0.66′′ – for LSST, this corresponds
to approximately half of the exposures with the best im-
age quality. Each atmosphere realisation creates a unique
PSF pattern; simulating 100 independently corresponds to
a low-cadence survey campaign where observations are well-
separated in time.

To investigate (2), we do not actually simulate star fields
at different galactic latitudes. Instead, we create an over-
sampled stellar catalogue based on the same stellar pop-
ulation used for (1), so that our PhoSim input catalogue
contains higher stellar density than an “average” field, while
retaining the same signal to noise threshold in all “detected”
star catalogs. We then down-sample at the detection cat-
alogue level to achieve any desired stellar density used for
interpolation – which can then be associated with a given
galactic latitude. In this analysis, we consider stellar densi-
ties between the range 4 and 0.25 arcmin−2, which approxi-
mately covers the range of galactic latitudes |b| > 25. As will
be explained later, the stellar density quoted here is after a
signal-to-noise ratio (SNR) cut, which eliminates very dim
stars and noise peaks (r >23.5). In reality, harder cuts may
be used to guarantee purity of the star sample.

For each of the above scenarios we generate one im-
age containing only the expected stars at their given po-
sitions, and a second image containing an ultra-dense grid
of bright stars (∼ 50/arcmin2) to sample the “true” PSF
pattern. Noise corresponding to a sky background level of
21 mag/arcsec2 was added to the star field images. All im-
ages were generated in the r band for a single CCD sensor
near the center of the LSST focal plane, which corresponds
to a 13.6′×13.6′ field on the sky.

The suite of simulated images were analysed using the
same pipeline, in which stars were first detected using the
Source Extractor (Bertin & Arnouts 1996) package, and
then catalogued using the imcat software developed by Nick
Kaiser.7 Shape estimation was performed using the imcat
routine “getshapes”. We use the output “e[0]” and “e[1]” as
our representative measures of ellipticity (εobs1,k and εobs2,k in
Section 3) and retained stars measured with imcat param-
eter “ν” larger than 25 (equivalent to a signal-to-noise cut
∼13) In the absence of uncertainty estimates on the ellip-
ticity components, we propagate ν as the stars’ statistical
weight.

psfent, together with two other PSF modelling meth-
ods, polynomial fitting and boxcar smoothing (details of our
implementation of which are given in Appendix A), were
then applied to the detected stars. From each method, the
output was a list of predicted values of the PSF elliptic-
ity at the ultra-dense grid positions of the bright stars in
the “true PSF” image. These grid positions stand for back-
ground galaxy positions in a real lensing analysis. In this
way we were able to compare the output catalogues directly
with the true underlying ellipticity maps.

4.3 Performance metrics

To quantitatively evaluate the performance of the different
PSF interpolation techniques, we employ two performance

7 http://www.ifa.hawaii.edu/ kaiser/imcat/

metrics in this paper. The first metric, σ[εPSF], is defined to
be the root-mean-square of the PSF ellipticity model error:

σ[εPSF] =
√
〈δε21〉+ 〈δε22〉 . (5)

where

δεi = εi,model − εi,true . (6)

The second metric, σ̃2
sys,PSF, is defined as the average

amplitude of the two-point correlation function of the PSF
ellipticity model errors in the scales of interest:

σ̃2
sys,PSF =

1

θmax − θmin

∫ θmax

θmin

|ξs,PSF
+ (θ)|dθ , (7)

where ξs,PSF
+ (θ) is the correlation function of δε = δε1+iδε2.

The absolute value in the integrand prevents the anti-
correlation regime canceling out some of the correlation sig-
nal. We use θmin = 0.5′ and θmax = 13′ in our single LSST
CCD sensor (13.6′ × 13.6′) simulations. This range is cho-
sen to sample the correlated PSF model errors on the full
sensor while eliminating small scales far below the average
stellar separation and large scales that come close to the
boundaries.

Note that σ[εPSF] measures the level of the absolute
errors in a certain PSF model, while σ̃2

sys,PSF is a measure of
the spatial correlation of the PSF model errors, in addition
to their absolute levels. This motivates us to take the ratio
of these two contributions and define an auxiliary metric R:

R =
σ̃2
sys,PSF

σ[εPSF]2
(8)

R is a relative measure of the how spatially-correlated the
residual ellipticities are, independent of the absolute mag-
nitude of the residual ellipticities. As seen in later sections,
this figure facilitates our comparison of different PSF inter-
polation methods.

4.4 Scaling with number of exposures

In the main analysis in this paper (Section 5), we quantify
the errors on the PSF ellipticity model for different interpo-
lation techniques for a single LSST exposure. In reality, one
can suppress the systematic errors that are independent be-
tween frames when properly combining multiple exposures.
It is the final combined systematic error of all the data that
impacts the cosmological constraints from weak lensing.

When the multiple exposures are far separated in time,
the atmospheric conditions are different and one expects the
PSF patterns to be independent. Similarly, the errors on the
PSF model are also expected to be independent. This sug-
gests that when averaging the ellipticity measurement of the
same galaxy over Nexp exposures, the ellipticity errors from
the atmosphere are expected to reduced as 1/

√
Nexp (cor-

responding to σ[εPSF]), and the correlation of these errors
should drop by 1/Nexp (corresponding to σ̃2

sys,PSF), or:

σ[εPSF] ∝
1√
Nexp

; (9)

σ[εPSF] ∝
1

Nexp
. (10)
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(a) (b)

Figure 4. (a) σ[εPSF] and (b) σ̃2
sys,PSF calculated as a function of the number of exposures combined (averaged), Nexp. We show in

both panels results for psfent (red), 5th-order polynomial fitting (green) and 5×5 boxcar smoothing (blue). The grey dash line indicates
the 1/

√
Nexp and 1/Nexp slope with arbitrary normalization for (a) and (b) respectively. All three statistics in both plots roughly follow

the Nexp scaling suggested by the grey lines.

This can be nicely demonstrated by performing the fol-
lowing test: we take the 100 realisations of simulated atmo-
spheric PSF and average the PSF model prediction at each
position over the first Nexp frames. σ[εPSF] and σ̃2

sys,PSF is
then calculated for the “average frame” and plotted against
Nexp in Figure 4. The two statistics scale with Nexp as ex-
pected in Equations 9 and 10, which confirms that the errors
produced by all three interpolation methods used in this pa-
per are stochastic over different exposures.

We use the results in Figure 4 to support arguments
later in Section 6.1, where we estimate the number of expo-
sures needed to reach a certain level of PSF model accuracy.

5 RESULTS

5.1 Variation with PSF pattern

The 100 atmospheric realisations in our simulation suite pro-
vide a wide range of PSF patterns. For example, three very
different PSF patterns on a single LSST CCD sensor are
shown in the top row of Figure 5, where the colours repre-
sent true PSF ε1 values. We treat the ε1 and ε2 patterns as
they were independent, as noted earlier, and only show ε1
here.

We observe that the left column (a) contains a PSF
pattern with some large-scale stripes that vary smoothly
across the CCD sensor, with very fine ripples aligned at a
direction different from the large stripes; the middle col-
umn (b) contains medium-size blobs without any preferred
direction; finally, the right column (c) shows nearly equal
strength of stripes in two nearly orthogonal directions, cre-
ating a grainy high-frequency pattern. When attempting to
model these patterns at a typical galactic latitude of |b| ∼ 60
(stellar density ' 1/arcmin2), the stars available to us for
reconstructing these PSF patterns are shown in the second
row on the same ellipticity colour scale. The last three rows
of Figure 5 show the PSF model generated from three dif-

ferent PSF interpolation techniques in the following order:
psfent, 5th-order polynomial fitting and 5× 5-pixel boxcar
smoothing.

Visually, one can readily see the power of psfent in
modelling the very different PSF patterns over the other
two methods. In (a), all three methods failed to model the
fine ripples, since they are much finer than the average stel-
lar separations. They all do, however, manage to pick up the
smooth “stripe” component. Both the polynomial and box-
car model in this case show bad behaviours on the edges of
the field, due to the small number of ill-measured stars domi-
nating the model. In (b), where the underlying PSF patterns
consist of mainly medium scale “patches”, the Gaussian ICF
used in psfent enables the model to capture these features
nicely, which is not possible with a polynomial model. The
boxcar model, on the other hand, is limited by the size of the
filter, which in this case is slightly larger than the patches
in the patterns. Finally in the right column (c), we show an
example where the polynomial model becomes worse than
even a simple boxcar smoothing. In this case the PSF pat-
tern almost has no power on the large scales, causing the
polynomial model to be entirely dominated by the noise.

In all the cases shown here, we can see the flexible multi-
scale algorithm allows psfent to model structures on a large
number of scales, and is well regulated by the prior construc-
tion thus less sensitive to noise.

The absolute correlation functions |ξs,PSF
+ | for the three

examples in Figure 5 are shown in Figure 6. In general, the
model errors are more correlated on small scales due to the
sparse sampling, and the limited resolution for all three mod-
elling techniques. The shape of these correlation functions
can be either smooth or oscillating. In particular, for poly-
nomial models, the shape of ξs,PSF

+ has some characteristic
features: a transition from positive (correlation) to negative
(anti-correlation) always appear at 3′ – 4′. As discussed in
H11, this is a result of both the modelling method and the
true atmospheric PSF pattern.

c© 2011 RAS, MNRAS 000, 1–14
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(a) (b) (c)

Figure 5. Illustration of the short exposure PSF interpolation problem, and the performance of different interpolation methods when
we have very different PSF patterns. The three different realisations all have stellar density ∼ 1/arcmin2. The maps in the first row
show the “true” PSF ellipticity (ε1) field that we would like to reconstruct from the stellar data in the second row, the observed stellar
ellipticities. The last three rows show model PSF ellipticity maps constructed with psfent, a 5th-order polynomial fit and a 5× 5-pixel
boxcar smoothing, respectively.
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(a)

(b)

(c)

Figure 6. Absolute two-point correlation functions of the PSF
ellipticity model errors for the three different PSF patterns in
Figure 5. In each panel, we show results for psfent (red), 5th-
order polynomial fitting (green) and 5×5-pixel boxcar smoothing
(blue). The hollowed labels indicate negative values.

Figure 7 shows, for the 100 different realisations of the
atmosphere, the median behaviour of these ellipticity error
correlation functions with the error bars indicating the stan-
dard deviation of the 100 curves divided by

√
100. The me-

dian σ[εPSF] and σ̃2
sys,PSF values for these 100 atmospheric

realisations are listed in Table 1. The final column R, as
explained earlier, is a measure of the relative reduction in

Figure 7. Median correlation function of the PSF ellipticity
model errors of 100 different PSF patterns, at the “typical” stellar
density of 1/arcmin2. The results are shown for psfent (red), 5th-
order polynomial fitting (green) and 5×5 boxcar filtering (blue).
The error bars indicate the rms spread in the 100 exposures di-
vided by

√
100. Hollowed labels indicate negative values.

σ[εPSF] σ̃2
sys,PSF R

psfent 7.41×10−3 2.41×10−6 4.39×10−2

Polynomial 8.93 ×10−3 8.67×10−6 10.87×10−2

Boxcar 9.51 ×10−3 16.77×10−6 18.54×10−2

Table 1. Median metric σ[εPSF] and σ̃2
sys,PSF for the three PSF

interpolation techniques for 100 different PSF patterns sampled
at the nominal stellar density of 1/arcmin2. The final column R
is a measure of the level of the spatial correlations in the PSF
model errors, independent of the absolute errors.

spatially-correlated residual ellipticity for the level of spatial
correlation in the model errors independent of the absolute
errors. Quantitatively, psfent provides improvement in the
absolute ellipticity modelling error σ[εPSF] ∼ 17% over the
5th-order polynomial and ∼ 22% over the boxcar smooth-
ing model. For the correlation of these errors, or σ̃2

sys,PSF,
psfent performs ∼ 3.5 times better than the polynomial
model and ∼ 7 times better than boxcar smoothing. The
corresponding R values suggest that the model errors from
psfent is ∼ 2.5 times less correlated than that from polyno-
mial models and ∼ 4.2 times less correlated than that from
boxcar models. Notice that the main power in psfent lies
not in the absolute reduction of the model errors, but in the
fact that the flexible free-form model creates makes errors
less correlated in space, which is an important property for
measurements like cosmic shear, where the main signal is
embedded in the spatial correlation of galaxy shapes.

5.2 Variation with stellar density

Having examined the performance of the three PSF inter-
polation methods on a “typical” field, we would now like to
understand how the three PSF interpolation schemes are af-
fected by the available density of stars (we explore the range
from 0.25 to 4 stars per arcmin2 for a complete sample of
realistic stellar distributions). This test is especially impor-
tant for images at high galactic latitude, where stars are
very sparse. The ability to reconstruct the PSF variation

c© 2011 RAS, MNRAS 000, 1–14
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(a) (b) (c)

Figure 8. Illustration of the single short exposure PSF interpolation problem, and the performance of different interpolation methods as
a function of stellar density. See the caption of Figure 5 for the description of the maps in the five rows; the different columns correspond
to the same atmospheric PSF pattern (Figure 8 (b)), but sampled by stars with densities of 0.25 (a), 1 (b) and 4 (c) /arcmin2, as shown
in the second row.
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(a) (b)

Figure 10. Median values for 100 PSF patterns for the two statistics: (a) σ[εPSF] and (b) σ̃2
sys,PSF over a range of stellar densities. The

error bars show the interquartile range divided by
√
100. We show in each panel results for psfent (red), 5th-order polynomial fitting

(green) and 5×5 boxcar smoothing (blue). In both statistics, psfent performs consistently better than the other two techniques.

at these fields may increase the effective area of a survey
and therefore its statistical power. Figure 8 shows, for the
PSF pattern in Figure 5 (b), how the PSF model improves,
for the three interpolation methods, as the stellar density
increases. Figure 9 shows how the residual ellipticity corre-
lation in each case changes accordingly.

Figure 8 visually illustrates one example of how the
three different interpolation methods respond to the in-
creased available stellar data points. We observe that the
polynomial models appear to be particularly ill behaved
when the available stars are under-dense (a) and over-dense
(c). This is an example of imposing an improper prior as-
sumption about the PSF pattern while ignoring the data.
In contrast, the simple boxcar smoothing technique works
in the opposite direction, where the model is purely driven
by data with essentially no assumption on the expected PSF
patterns. As a result, the models are just reflecting the avail-
able data, where we get a model with no structure in the
under-dense case (a), and a model with lots of small scale
structure in the over-dense case (c). psfent is effectively a
more sophisticated version of the boxcar smoothing with in-
formative priors and multiple structure scales. The change
from (a) to (c) for the psfent model is qualitatively similar
to the boxcar smoothing, as it is primarily dictated by data.
But when data is insufficient, as in (a), psfent does not
generate entirely flat models like boxcar smoothing, rather,
we can see traces of the psfent priors creating some struc-
ture in the PSF model. When the stellar data is abundant
(c), psfent lets data take over to drive the fit and only
makes sure that the model stays in a physically reasonable
range as specified by the priors. Figure 9 confirms the above
observation more quantitatively.

In Figure 10, we show for our 100 different atmosphere
realisations the median σ[εPSF] and σ̃2

sys,PSF statistics as a
function of stellar density. In all stellar densities, psfent
consistently performs ∼ 20% better in σ[εPSF] and 3–10
times better in σ̃2

sys,PSF compared to boxcar smoothing and
polynomial fitting.

The two statistics show similar trends in general. As we
explained earlier, for psfent and boxcar smoothing, since

the model is primarily driven by data, the model improves
monotonically as more data becomes available. The 20%
and nearly 4-times improvement of psfent in σ[εPSF] and
σ̃2
sys,PSF respectively compared to boxcar smoothing mainly

comes from psfent’s ability to capture multi-scale struc-
tures and regulate the model using priors so that noise does
not get amplified. A fixed order polynomial function, on
the other hand, when optimized for a certain stellar den-
sity (1/arcmin2), over-fits (c) or under-fits (a) data when
the stellar density varies, which results in a local minimum
in the two green curves. The polynomial model, when opti-
mized, is a reasonably good description of the smooth varia-
tion in the large-scale PSF patterns, but still fails to capture
the small-scale structures, which explains why psfent still
performs better in that case.

6 DISCUSSION

6.1 Implications of σ[εPSF] and σ̃2
sys,PSF on shear

systematics

To project the improvement on PSF interpolation from ps-
fent onto the improvement in weak lensing shear measure-
ments for a LSST-like survey, we return to Table 1 and dis-
cuss the implications of the σ[εPSF] and σ̃2

sys,PSF values un-
der the nominal stellar density of 1/arcmin2.

According to Amara & Réfrégier (2008), for future stage
IV8 weak lensing surveys not to be systematics-limited, one
can set limits on the allowed systematic errors on the spuri-
ous shear power spectrum. Paulin-Henriksson et al. (2008)
extended from Amara & Réfrégier (2008) and estimated that
the allowed errors on determining the PSF ellipticity corre-
sponding to those limits on spurious shear power spectrum
is:

σ[εPSF] 6 10−3 (11)

Combining the first column in Table 1 and Equation 9,

8 LSST, Euclid etc.
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Nexp operation time (years)
optimistic pessimistic

psfent 55 1.50 2.99
Polynomial 80 2.17 4.35
Boxcar 90 2.45 4.89

Table 2. Number of exposures required for the PSF ellipticity
measurement accuracy to meet Equation 11 for the three PSF
interpolation methods under nominal conditions. Also listed are
the corresponding expected time span these exposures can be
obtained by LSST in the optimistic and pessimistic scenarios.

we can derive the number of exposures needed for each of
the interpolation methods to achieve Equation 11 as listed
in Table 2. Also listed is the corresponding operation time
for LSST, where we have adapted the assumptions in C12
and assumed two different scenarios – “optimistic” (Nexp =
368) and “pessimistic” (Nexp = 184), where a total of Nexp

single 15-second exposures are combined in the final 10-year
dataset for cosmic shear measurements.

However, we note that Equation 11 is a rather simplistic
estimation that does not account properly for the correlation
properties of these errors and the spurious shear arising from
a realistic PSF correction pipeline. An alternative and more
realistic approach to interpret the results from our study
in terms of shear measurements is to turn to C12, where
we looked at the spurious shear correlation function by ac-
tually measuring these levels on high fidelity simulations.
We concluded in C12 that the polynomial PSF model gen-
erates spurious shear correlation approximately at the level
required by Amara & Réfrégier (2008) in the optimistic case
and 2 times too high in the pessimistic case. Since psfent
provides a ∼ 3.5 times improvement in the PSF error corre-
lation over polynomial models, as can be seen by comparing
the first two rows in the second column in Table 1, we can
expect the spurious shear power spectrum to also lower by a
factor of ∼ 3.5 if psfent, instead of polynomials, were used
to interpolate the PSFs, bringing the level of spurious shear
power spectrum 3.5 (optimistic) and 1.75 (pessimistic) times
lower than the target level.

As an aside, an additional benefit for using psfent (or
boxcar smoothing) is the smoothing of oscillating features in
the correlation functions. Such smoothing makes it easier to
model them with smooth functions such as that proposed by
Amara & Réfrégier (2008), and can lead to a more accurate
Fisher Matrix-type calculation in later analyses.

6.2 Correlating galaxies across exposures

Correlating galaxy ellipticities in different exposures has
been one of the proposed solutions to the problem of stochas-
tic atmospheric PSF correlations (Jain et al. 2006). This,
however, comes at the price of decreasing the statistical
power of the survey. Exploring the tradeoff between statisti-
cal and systematic PSF interpolation errors using this tech-
nique is not the main focus of this paper. Here, we have effec-
tively assumed a LensFit-style (Miller et al. 2007) analysis,
where the PSF ellipticity map is estimated for each expo-
sure, the galaxy images deconvolved, and the ellipticity es-
timates simply averaged. This assumption is justified by the
behaviour of the residual PSF ellipticity correlation function

with increasing Nexp as we have shown. We presume that
when correlating between different exposures, it will still be
beneficial to start with a more accurately-interpolated PSF
model.

6.3 Computational cost

On a standard 64-bit 2×2.2 GHz processor, psfent takes
on average ∼13.0 seconds per LSST CCD sensor per pair
of shape parameters (ε1, ε2). Adding error estimation (sam-
pling from the posterior cloud) adds an extra ∼9 sec of run
time. This is about an order of magnitude slower than the
two other techniques we investigated. For more complicated
shape parametrization the runtime would increase linearly
with the number of parameters, and also with the number
of images analysed. For example, if psfent were to be used
for in the LSST data processing pipeline, the PSF model in
each exposure on the ∼200 CCD sensors would need to be
calculated in ∼ 17 seconds (15 sec exposure + 2 sec read-
out). This demands ∼200 computers running for the PSF
reconstruction alone. Though large, these numbers are not
outrageous considering the expected decrease in unit cost for
computers over the next decade and the possibility of fur-
ther accelerating the code via hardware parallelisation such
as GPUs.

In the meantime, we recommend that the current code
can be used for smaller scale datasets when extremely ac-
curately interpolated PSF maps are vital for the specific
science goal. As well as weak lensing, these might include
reconstructing the detailed structures of complex objects,
and precision photometry of faint objects.

7 CONCLUSIONS

In this paper we have introduced a new PSF interpolation
method, psfent, based on a multi-scale maximum-entropy
image reconstruction code. The problem we set out to solve
is reconstructing the multi-scale spatial variations of PSF
shapes, due to atmospheric turbulence, in short exposure
images, from sparsely distributed, noisily measured stars –
a potential problem for future weak lensing surveys such as
LSST.

Our analysis of simulated data allows us to draw the
following conclusions:

• Compared with two other PSF interpolation methods,
one of which is commonly used in current data analyses,
psfent provides more accurately interpolated PSF shapes:
the absolute residual ellipticities improve ∼ 20% while the
correlated residual ellipticities are a factor 3 –10 smaller than
the other two methods, over a wide range of different PSF
patterns and stellar densities.
• When combining multi-epoch datasets, the interpola-

tion errors due to the atmosphere are stochastic, decreasing
with the number of exposures taken as 1/

√
Nexp. The cor-

relation function amplitude decreases as 1/Nexp.
• The improvement in PSF modelling from psfent sup-

presses the spurious shear in cosmic shear measurements.
Combining previous studies from realistic simulations and
the results in this work, we find that systematic errors due
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to PSF interpolation for LSST will be subdominant to sta-
tistical errors even in the most pessimistic scenario, were
psfent to be used for constructing the PSF models.

While it may still become a practical solution even for
large datasets such as LSST, the relatively high computa-
tional cost of powerful algorithms like psfent should moti-
vate the development of faster inference methods. The paper
by Bergé et al. (2012) appeared as we were completing this
study: their results are complementary to those presented
here, in that they investigate the PSF interpolation problem
on larger scales, using re-sampled real Subaru data that is
less dominated by the atmosphere. It would be very interest-
ing to apply their Kriging technique to our simulated data,
and compare performance in terms of accuracy and speed.
Like Bergé et al. (2012), we have demonstrated the benefits
of using very flexible models, but also the use of methods
both inspired and constrained by realistic simulations. In-
jecting statistical information about the atmospheric PSF
anisotropy into interpolation methods appears to be a fruit-
ful approach.

All the simulated data used in this pa-
per is freely available at the following website:
http://www.slac.stanford.edu/ chihway/psfent/.
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APPENDIX A: OTHER MODELLING
METHODS

A1 Polynomial fitting

As discussed in Section 2, in most current weak lens-
ing pipelines, the PSF spatial variation is assumed to be
smoothly varying on scaled comparable to the field and can
thus be modelled with some low order polynomial functions.
We have shown that PSF patterns from short exposures,
however, display higher frequency spatial variations that re-
quire higher order fits. As a result, we have examined polyno-
mials of order 2 to 5 as PSF models and found that 2nd-order
models are insufficient in representing the PSF variations;
3rd-order models are usually sufficient, but occasionally an
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even higher order model is needed. We choose to use 5th-
order models in our main analyses, but have confirmed that
in most cases, the results are identical to 3rd-order fits. We
minimize the effective χ2:

χ2 =
∑

w2
ε(ε

model.j
i (p;x, y)− εi)2, i = 1, 2 , (A1)

where εmodel,ji (p;x, y) is a two dimensional, jth order poly-
nomial function of (x, y), p are the fitting parameters and
we use the signal-to-noise ratio of each star as wε.

A2 Boxcar smoothing

Alternatively, we examine the approach of modelling the
PSF by directly smoothing the stellar ellipticities with a
boxcar filter. In this approach, stars need to first be binned
into large pixels, where we assign a weighted average ellip-
ticity to each pixel (j1, j2), defined:

εj1j2i =
∑

pixel (j1,j2)

Wεεi , i = 1, 2 .

The size of the pixels are determined by the number of stars
– we pixilate the image so that in each pixel contains ap-
proximately 1 star. A boxcar filter of size m × m pixels is
then applied to the large pixel grid so that the ellipticity
of pixel (j1, j2) is replaced by the average ellipticity of the
neighbouring (m2 − 1) pixels:

εmodel,j1j2i =
1

m2 − 1
((

m′∑
a=−m′

m′∑
b=−m′

ε
(j1+a)(j2+b)
i )− εj1j2i ) ;

m′ =
m− 1

2
, i = 1, 2 .

The original coordinates are then recovered so that the mod-
elled PSF ellipticities of all points falling in pixel (j1, j2) will
be εmodel,j1j2

(a)

(b)

(c)

Figure 9. Absolute two point correlation functions of the PSF
ellipticity model errors for different stellar densities: (a) 0.25, (b)
1 and (c) 4 /arcmin2. The three cases have the same underlying
PSF pattern but are sampled at different rates. In each panel, we
show results for psfent (red), 5th-order polynomial fitting green)
and 5×5 boxcar smoothing (blue). The hollowed labels indicate
negative values.
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